Interaction between like-charged colloidal spheres in electrolyte solutions.

نویسندگان

  • J Wu
  • D Bratko
  • J M Prausnitz
چکیده

How colloidal particles interact with each other is one of the key issues that determines our ability to interpret experimental results for phase transitions in colloidal dispersions and our ability to apply colloid science to various industrial processes. The long-accepted theories for answering this question have been challenged by results from recent experiments. Herein we show from Monte-Carlo simulations that there is a short-range attractive force between identical macroions in electrolyte solutions containing divalent counterions. Complementing some recent and related results by others, we present strong evidence of attraction between a pair of spherical macroions in the presence of added salt ions for the conditions where the interacting macroion pair is not affected by any other macroions that may be in the solution. This attractive force follows from the internal-energy contribution of counterion mediation. Contrary to conventional expectations, for charged macroions in an electrolyte solution, the entropic force is repulsive at most solution conditions because of localization of small ions in the vicinity of macroions. Both Derjaguin-Landau-Verwey-Overbeek theory and Sogami-Ise theory fail to describe the attractive interactions found in our simulations; the former predicts only repulsive interaction and the latter predicts a long-range attraction that is too weak and occurs at macroion separations that are too large. Our simulations provide fundamental "data" toward an improved theory for the potential of mean force as required for optimum design of new materials including those containing nanoparticles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to...

متن کامل

When Like Charges Attract: The Effects of Geometrical Confinement on Long-Range Colloidal Interactions.

High-resolution measurements of the interaction potential between pairs of charged colloidal microspheres suspended in water provide stringent tests for theories of colloidal interactions. The screened Coulomb repulsions we observe for isolated spheres agree quantitatively with predictions of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Confining the same spheres between charged glass wa...

متن کامل

Effect of three-body forces on the phase behavior of charged colloids

Statistical-thermodynamic theory for predicting the phase behavior of a colloidal solution requires the pair interaction potential between colloidal particles in solution. In practice, it is necessary to assume pairwise additivity for the potential of mean force between colloidal particles, but little is known concerning the validity of this assumption. This paper concerns interaction between s...

متن کامل

Generalizations for the potential of mean force between two isolated colloidal particles from Monte Carlo simulations.

A substantial amount of experimental and numerical evidence has shown that the Derjaguin-Landau-Verwey-Overbeek theory is not suitable for describing those colloidal solutions that contain multivalent counterions. Toward improved understanding of such solutions, the authors report Monte Carlo calculations wherein, following Rouzina and Bloomfield, they postulate that, in the absence of van der ...

متن کامل

Pair interaction of charged colloidal spheres near a charged wall.

Although equally charged colloidal particles dispersed in clean water are expected to repel each other, an unexplained long-range attraction has consistently been reported for charged colloidal spheres confined by charged macroscopic surfaces. We present an alternative equilibrium measurement of the pair interaction energy for charged spheres near a single charged wall. Analyzing their radial d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 26  شماره 

صفحات  -

تاریخ انتشار 1998